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Recap

Gradient of a scalar valued function f(x): x →
(
∂f
∂x1

, . . . , ∂f
∂xD

)T

Gradient of a vector valued function f(x) is called Jacobian:
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Gradient descent on MLP

Loss is L(W,b) =
∑
n l(f(xn;W,b), yn)

For applying Gradient descent, we need gradient of individual sample
loss with respect to all the model parameters

ln = l(f(xn;W,b), yn)

∂ln
∂W

(l)
i,j

and ∂ln
∂b(l)

i
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Forward pass operation

x(0) = x
W (1),b(1)

−−−−−−−→ s(1) σ−→ x(1) W (2),b(2)
−−−−−−−→ s(2) . . . x(L−1) W (L),b(L)

−−−−−−−→ s(L) σ−→ x(L) = f(x;W, b)

Formally, x(0) = x, f(x;W,b) = x(L)

∀l = 1, . . . , L
{
s(l) = W (l)x(l−1) + b(l)

x(l) = σ(s(l))
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Chain rule of differential calculus

Core concept of backpropagation

(g ◦ f)′(x) = g′(f(x)) · f ′(x)

∂

∂x
g(f(x)) = ∂g(a)

∂a

∣∣∣∣
a=f(x)

· ∂f(x)
∂x

JfN ◦fN−1◦...f1(x) = JfN (fN−1(...f1(x))) · JfN−1(fN−2(...f1(x))) . . . · Jf2(f1(x)) · Jf1(x)

Jf(x) is Jacobian of f computed at x.
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Consider a specific Layer

x(l−1) W (l),b(l)
−−−−−→ s(l) σ−→ x(l)

x
(l)
i = σ(s(l)

i )
Since s(l) influences loss L through only x(l),

∂ℓ

∂s
(l)
i

= ∂ℓ

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

= ∂ℓ

∂x
(l)
i

σ′(s(l)
i )

s
(l)
i = ΣjW

(l)
i,j x

(l−1)
j + b

(l)
i

Since x(l−1) influences the loss L only through s(l),

∂ℓ

∂x
(l−1)
j

= Σi
∂ℓ

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

= Σi
∂ℓ

∂s
(l)
i

W
(l)
i,j
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We need gradients wrt parameters W and b

x(l−1) W (l),b(l)
−−−−−→ s(l) σ−→ x(l)

W
(l)
i,j and b(l) influence the loss through s(l) via

s
(l)
i = ΣjW

(l)
i,j x

(l−1)
j + b

(l)
i ,

∂ℓ

∂W
(l)
i,j

= ∂ℓ

∂s
(l)
i

∂s
(l)
i

∂W
(l)
i,j

= ∂ℓ

∂s
(l)
i

x
(l−1)
j (1)

∂ℓ

∂b
(l)
i

= ∂ℓ

∂s
(l)
i

∂s
(l)
i

∂b
(l)
i

= ∂ℓ

∂s
(l)
i

(2)
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Summary of Backprop

From the definition of loss, obtain ∂l

∂x
(l)
i

Recursively compute the loss derivatives wrt the activations

∂ℓ

∂s
(l)
i

= ∂ℓ

∂x
(l)
i

σ′(s(l)
i ) and ∂ℓ

∂x
(l−1)
j

= Σi
∂ℓ

∂s
(l)
i

w
(l)
i,j

Then wrt the parameters
∂ℓ

∂w
(l)
i,j

= ∂ℓ

∂s
(l)
i

x
(l−1)
j and ∂ℓ

∂b
(l)
i

= ∂ℓ

∂s
(l)
i
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Jocobian in Tensorial form

ψ : RN → RM then
[
∂ψ
∂x

]
=


∂ψ1
∂x1

. . . ∂ψ1
∂xN

...
. . .

...
∂ψM
∂x1

. . . ∂ψM
∂xN



ψ : RN×M → R then
[[
∂ψ
∂x

]]
=


∂ψ
∂w1,1

. . . ∂ψ
∂w1,M

...
. . .

...
∂ψ

∂wN,1
. . . ∂ψ

∂wN,M
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Forward Pass
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Goal of Backward Pass
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Begin from succeeding layer
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Begin from succeeding layer
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Begin from succeeding layer
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Update the parameters

W (l) = W (l) − η
[[

∂ℓ
∂w(l)

]]
and b(l) = b(l) − η

[
∂ℓ
∂b(l)

]
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Observations

BP is basically simple: applying chain rule iteratively

It can be expressed in tensorial form (similar to the forward pass)
Heavy computations are with the linear operations
Nonlinearities go into simple element wise operations
In an untreated situation, BP Needs all the intermediate layer results
to be in memory
Takes twice the computations of forward pass
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Beyond MLP
We can generalize MLP

To an arbitrary Directed Acyclic Graph (DAG)

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 19



Forward pass in the computational graph

x(0) = x

x(1) = ϕ(1)(x(0);w(1))
x(2) = ϕ(2)(x(0), x(1);w(2))
f(x) = x(3) = ϕ(3)(x(1), x(2);w(1))

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 20



Forward pass in the computational graph

x(0) = x

x(1) = ϕ(1)(x(0);w(1))

x(2) = ϕ(2)(x(0), x(1);w(2))
f(x) = x(3) = ϕ(3)(x(1), x(2);w(1))

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 20



Forward pass in the computational graph

x(0) = x

x(1) = ϕ(1)(x(0);w(1))
x(2) = ϕ(2)(x(0), x(1);w(2))

f(x) = x(3) = ϕ(3)(x(1), x(2);w(1))

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 20



Forward pass in the computational graph

x(0) = x

x(1) = ϕ(1)(x(0);w(1))
x(2) = ϕ(2)(x(0), x(1);w(2))
f(x) = x(3) = ϕ(3)(x(1), x(2);w(1))

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 20



Notation: Jacobian of a general transformation

if (a1 . . . aQ) = ϕ(b1 . . . bR) then we use the notation (3)

[
∂a
∂b

]
=JTϕ =


∂a1
∂b1

. . .
∂aQ

∂b1
...

. . .
...

∂a1
∂bR

. . .
∂aQ

∂bR

 (4)

if (a1 . . . aQ) = ϕ(b1 . . . bR; c1 . . . cS) then we use the notation (5)

[
∂a
∂c

]
=JTϕ|c =


∂a1
∂c1

. . .
∂aQ

∂c1
...

. . .
...

∂a1
∂CS

. . .
∂aQ

∂cS

 (6)
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Backward pass

From the loss equation, we can compute
[

∂ℓ
∂x(3)

]

[
∂ℓ

∂x(2)

]
=

[
∂x(3)

∂x(2)

] [
∂ℓ

∂x(3)

]
= JTϕ(3)|x(2)

[
∂ℓ

∂x(3)

]
[

∂ℓ
∂x(1)

]
=

[
∂x(3)

∂x(1)

] [
∂ℓ

∂x(3)

]
+

[
∂x(2)

∂x(1)

] [
∂ℓ

∂x(2)

]
=JTϕ(3)|x(1)

[
∂ℓ

∂x(3)

]
+ JTϕ(2)|x(1)

[
∂ℓ

∂x(2)

]
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[
∂ℓ

∂x(2)

]
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Backward pass

From the loss equation, we can compute
[

∂ℓ
∂x(3)

]
[

∂ℓ
∂x(2)

]
=

[
∂x(3)

∂x(2)

] [
∂ℓ

∂x(3)

]
= JTϕ(3)|x(2)

[
∂ℓ

∂x(3)

]
[

∂ℓ
∂x(1)

]
=

[
∂x(3)

∂x(1)

] [
∂ℓ

∂x(3)

]
+

[
∂x(2)

∂x(1)

] [
∂ℓ

∂x(2)

]
=JTϕ(3)|x(1)

[
∂ℓ

∂x(3)

]
+ JTϕ(2)|x(1)

[
∂ℓ

∂x(2)

]
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Backward pass

[
∂ℓ

∂w(1)

]
=

[
∂x(3)

∂w(1)

] [
∂ℓ

∂x(3)

]
+

[
∂x(1)

∂w(1)

] [
∂ℓ

∂x(1)

]
=JTϕ(3)|w(1)

[
∂ℓ

∂x(3)

]
+ JTϕ(1)|w(1)

[
∂ℓ

∂x(1)

]

[
∂ℓ

∂w(2)

]
=

[
∂x(2)

∂w(2)

] [
∂ℓ

∂x(2)

]
= JTϕ(2)|w(2)

[
∂ℓ

∂x(2)

]

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 23



Backward pass

[
∂ℓ

∂w(1)

]
=

[
∂x(3)

∂w(1)

] [
∂ℓ

∂x(3)

]
+

[
∂x(1)

∂w(1)

] [
∂ℓ

∂x(1)

]
=JTϕ(3)|w(1)

[
∂ℓ

∂x(3)

]
+ JTϕ(1)|w(1)

[
∂ℓ

∂x(1)

]
[

∂ℓ
∂w(2)

]
=

[
∂x(2)

∂w(2)

] [
∂ℓ

∂x(2)

]
= JTϕ(2)|w(2)

[
∂ℓ

∂x(2)

]
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Developing DNN architectures

Developing large architectures from scratch is tedious

DL frameworks facilitate with libraries for

tensor operators
mechanisms to combine them into DAGs
automatically differentiate them
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Autograd
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Gradient Computation

PyTorch automatically constructs on-the-fly graph to compute
gradient of any wrt any tensor

Via autograd
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Autograd

Easy to use syntax: only need to define the sequence of forward pass
operations

Flexible: Computational graph can be dynamic, so is the forward pass
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Autograd in PyTorch

A tensor has the Boolean field ‘requires_grad’

PyTorch knows if it has to compute gradients wrt this tensor or not
Default is False
requires_grad_() function can be used to set to any value
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Autograd

torch.autograd.grad(o/p,i/p) returns gradients of outputs wrt
the inputs
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Backward()

Tensor.backward() accumulates the gradients of all the leaf nodes
in the graph

Tensor.grad field accumulates these gradient
Standard function used to train the models.
Since it ACCUMULATES the gradients, one may need to set
Tensor.grad to zero before calling it
Accumulation is helpful (e.g. sum of losses, or sum over different
mini-batches, etc.)
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torch.no_grad()

Switches the autograd machinery off

Useful for operations such as parameter updation
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detach()

Creates a tensor which only shares data but doesn’t require gradient
computation

Not connected to the current graph
Used when gradient should not be propagated beyond a variable, or
to update the leaf nodes in the graph
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Some Notes

By default, autograd deletes the computational graph after it is
evaluated

retain_graph indicates to keep it
Autograd can compute higher-order derivatives
Specified with create_graph = True
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Demo

Colab Notebook: Backword()
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https://colab.research.google.com/drive/1TwTX3QN2mp3JYvPgRIpUzkiHjKOA0aM_?usp=sharing

