
Deep Learning for Computer Vision

Dr. Konda Reddy Mopuri
Mehta Family School of Data Science and Artificial Intelligence

IIT Guwahati
Aug-Dec 2022

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 1



Recap

Gradient of a scalar valued function f(x): x →
(
∂f
∂x1

, . . . , ∂f
∂xD

)T

Gradient of a vector valued function f(x) is called Jacobian:

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 2



Recap

Gradient of a scalar valued function f(x): x →
(
∂f
∂x1

, . . . , ∂f
∂xD

)T
Gradient of a vector valued function f(x) is called Jacobian:

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 2



Gradient descent on MLP

Loss is L(W,b) =
∑
n l(f(xn;W,b), yn)

For applying Gradient descent, we need gradient of individual sample
loss with respect to all the model parameters

ln = l(f(xn;W,b), yn)

∂ln
∂W

(l)
i,j

and ∂ln
∂b(l)

i

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 3



Gradient descent on MLP

Loss is L(W,b) =
∑
n l(f(xn;W,b), yn)

For applying Gradient descent, we need gradient of individual sample
loss with respect to all the model parameters

ln = l(f(xn;W,b), yn)

∂ln
∂W

(l)
i,j

and ∂ln
∂b(l)

i

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 3



Forward pass operation

x(0) = x
W (1),b(1)

−−−−−−−→ s(1) σ−→ x(1) W (2),b(2)
−−−−−−−→ s(2) . . . x(L−1) W (L),b(L)

−−−−−−−→ s(L) σ−→ x(L) = f(x;W, b)

Formally, x(0) = x, f(x;W,b) = x(L)

∀l = 1, . . . , L
{
s(l) = W (l)x(l−1) + b(l)

x(l) = σ(s(l))

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 4



Chain rule of differential calculus

Core concept of backpropagation

(g ◦ f)′(x) = g′(f(x)) · f ′(x)

∂

∂x
g(f(x)) = ∂g(a)

∂a

∣∣∣∣
a=f(x)

· ∂f(x)
∂x

JfN ◦fN−1◦...f1(x) = JfN (fN−1(...f1(x))) · JfN−1(fN−2(...f1(x))) . . . · Jf2(f1(x)) · Jf1(x)

Jf(x) is Jacobian of f computed at x.

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 5



Chain rule of differential calculus

Core concept of backpropagation

(g ◦ f)′(x) = g′(f(x)) · f ′(x)

∂

∂x
g(f(x)) = ∂g(a)

∂a

∣∣∣∣
a=f(x)

· ∂f(x)
∂x

JfN ◦fN−1◦...f1(x) = JfN (fN−1(...f1(x))) · JfN−1(fN−2(...f1(x))) . . . · Jf2(f1(x)) · Jf1(x)

Jf(x) is Jacobian of f computed at x.

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 5



Chain rule of differential calculus

Core concept of backpropagation

(g ◦ f)′(x) = g′(f(x)) · f ′(x)

∂

∂x
g(f(x)) = ∂g(a)

∂a

∣∣∣∣
a=f(x)

· ∂f(x)
∂x

JfN ◦fN−1◦...f1(x) = JfN (fN−1(...f1(x))) · JfN−1(fN−2(...f1(x))) . . . · Jf2(f1(x)) · Jf1(x)

Jf(x) is Jacobian of f computed at x.

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 5



Chain rule of differential calculus

Core concept of backpropagation

(g ◦ f)′(x) = g′(f(x)) · f ′(x)

∂

∂x
g(f(x)) = ∂g(a)

∂a

∣∣∣∣
a=f(x)

· ∂f(x)
∂x

JfN ◦fN−1◦...f1(x) = JfN (fN−1(...f1(x))) · JfN−1(fN−2(...f1(x))) . . . · Jf2(f1(x)) · Jf1(x)

Jf(x) is Jacobian of f computed at x.

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 5



Consider a specific Layer

x(l−1) W (l),b(l)
−−−−−→ s(l) σ−→ x(l)

x
(l)
i = σ(s(l)

i )
Since s(l) influences loss L through only x(l),

∂ℓ

∂s
(l)
i

= ∂ℓ

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

= ∂ℓ

∂x
(l)
i

σ′(s(l)
i )

s
(l)
i = ΣjW

(l)
i,j x

(l−1)
j + b

(l)
i

Since x(l−1) influences the loss L only through s(l),

∂ℓ

∂x
(l−1)
j

= Σi
∂ℓ

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

= Σi
∂ℓ

∂s
(l)
i

W
(l)
i,j

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 6



Consider a specific Layer

x(l−1) W (l),b(l)
−−−−−→ s(l) σ−→ x(l)

x
(l)
i = σ(s(l)

i )

Since s(l) influences loss L through only x(l),

∂ℓ

∂s
(l)
i

= ∂ℓ

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

= ∂ℓ

∂x
(l)
i

σ′(s(l)
i )

s
(l)
i = ΣjW

(l)
i,j x

(l−1)
j + b

(l)
i

Since x(l−1) influences the loss L only through s(l),

∂ℓ

∂x
(l−1)
j

= Σi
∂ℓ

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

= Σi
∂ℓ

∂s
(l)
i

W
(l)
i,j

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 6



Consider a specific Layer

x(l−1) W (l),b(l)
−−−−−→ s(l) σ−→ x(l)

x
(l)
i = σ(s(l)

i )
Since s(l) influences loss L through only x(l),

∂ℓ

∂s
(l)
i

= ∂ℓ

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

= ∂ℓ

∂x
(l)
i

σ′(s(l)
i )

s
(l)
i = ΣjW

(l)
i,j x

(l−1)
j + b

(l)
i

Since x(l−1) influences the loss L only through s(l),

∂ℓ

∂x
(l−1)
j

= Σi
∂ℓ

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

= Σi
∂ℓ

∂s
(l)
i

W
(l)
i,j

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 6



Consider a specific Layer

x(l−1) W (l),b(l)
−−−−−→ s(l) σ−→ x(l)

x
(l)
i = σ(s(l)

i )
Since s(l) influences loss L through only x(l),

∂ℓ

∂s
(l)
i

= ∂ℓ

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

= ∂ℓ

∂x
(l)
i

σ′(s(l)
i )

s
(l)
i = ΣjW

(l)
i,j x

(l−1)
j + b

(l)
i

Since x(l−1) influences the loss L only through s(l),

∂ℓ

∂x
(l−1)
j

= Σi
∂ℓ

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

= Σi
∂ℓ

∂s
(l)
i

W
(l)
i,j

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 6



Consider a specific Layer

x(l−1) W (l),b(l)
−−−−−→ s(l) σ−→ x(l)

x
(l)
i = σ(s(l)

i )
Since s(l) influences loss L through only x(l),

∂ℓ

∂s
(l)
i

= ∂ℓ

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

= ∂ℓ

∂x
(l)
i

σ′(s(l)
i )

s
(l)
i = ΣjW

(l)
i,j x

(l−1)
j + b

(l)
i

Since x(l−1) influences the loss L only through s(l),

∂ℓ

∂x
(l−1)
j

= Σi
∂ℓ

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

= Σi
∂ℓ

∂s
(l)
i

W
(l)
i,j

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 6



We need gradients wrt parameters W and b

x(l−1) W (l),b(l)
−−−−−→ s(l) σ−→ x(l)

W
(l)
i,j and b(l) influence the loss through s(l) via

s
(l)
i = ΣjW

(l)
i,j x

(l−1)
j + b

(l)
i ,

∂ℓ

∂W
(l)
i,j

= ∂ℓ

∂s
(l)
i

∂s
(l)
i

∂W
(l)
i,j

= ∂ℓ

∂s
(l)
i

x
(l−1)
j (1)

∂ℓ

∂b
(l)
i

= ∂ℓ

∂s
(l)
i

∂s
(l)
i

∂b
(l)
i

= ∂ℓ

∂s
(l)
i

(2)

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 7



We need gradients wrt parameters W and b

x(l−1) W (l),b(l)
−−−−−→ s(l) σ−→ x(l)

W
(l)
i,j and b(l) influence the loss through s(l) via

s
(l)
i = ΣjW

(l)
i,j x

(l−1)
j + b

(l)
i ,

∂ℓ

∂W
(l)
i,j

= ∂ℓ

∂s
(l)
i

∂s
(l)
i

∂W
(l)
i,j

= ∂ℓ

∂s
(l)
i

x
(l−1)
j (1)

∂ℓ

∂b
(l)
i

= ∂ℓ

∂s
(l)
i

∂s
(l)
i

∂b
(l)
i

= ∂ℓ

∂s
(l)
i

(2)

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 7



We need gradients wrt parameters W and b

x(l−1) W (l),b(l)
−−−−−→ s(l) σ−→ x(l)

W
(l)
i,j and b(l) influence the loss through s(l) via

s
(l)
i = ΣjW

(l)
i,j x

(l−1)
j + b

(l)
i ,

∂ℓ

∂W
(l)
i,j

= ∂ℓ

∂s
(l)
i

∂s
(l)
i

∂W
(l)
i,j

= ∂ℓ

∂s
(l)
i

x
(l−1)
j (1)

∂ℓ

∂b
(l)
i

= ∂ℓ

∂s
(l)
i

∂s
(l)
i

∂b
(l)
i

= ∂ℓ

∂s
(l)
i

(2)

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 7



We need gradients wrt parameters W and b

x(l−1) W (l),b(l)
−−−−−→ s(l) σ−→ x(l)

W
(l)
i,j and b(l) influence the loss through s(l) via

s
(l)
i = ΣjW

(l)
i,j x

(l−1)
j + b

(l)
i ,

∂ℓ

∂W
(l)
i,j

= ∂ℓ

∂s
(l)
i

∂s
(l)
i

∂W
(l)
i,j

= ∂ℓ

∂s
(l)
i

x
(l−1)
j (1)

∂ℓ

∂b
(l)
i

= ∂ℓ

∂s
(l)
i

∂s
(l)
i

∂b
(l)
i

= ∂ℓ

∂s
(l)
i

(2)

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 7



Summary of Backprop

From the definition of loss, obtain ∂l

∂x
(l)
i

Recursively compute the loss derivatives wrt the activations

∂ℓ

∂s
(l)
i

= ∂ℓ

∂x
(l)
i

σ′(s(l)
i ) and ∂ℓ

∂x
(l−1)
j

= Σi
∂ℓ

∂s
(l)
i

w
(l)
i,j

Then wrt the parameters
∂ℓ

∂w
(l)
i,j

= ∂ℓ

∂s
(l)
i

x
(l−1)
j and ∂ℓ

∂b
(l)
i

= ∂ℓ

∂s
(l)
i

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 8



Summary of Backprop

From the definition of loss, obtain ∂l

∂x
(l)
i

Recursively compute the loss derivatives wrt the activations

∂ℓ

∂s
(l)
i

= ∂ℓ

∂x
(l)
i

σ′(s(l)
i ) and ∂ℓ

∂x
(l−1)
j

= Σi
∂ℓ

∂s
(l)
i

w
(l)
i,j

Then wrt the parameters
∂ℓ

∂w
(l)
i,j

= ∂ℓ

∂s
(l)
i

x
(l−1)
j and ∂ℓ

∂b
(l)
i

= ∂ℓ

∂s
(l)
i

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 8



Summary of Backprop

From the definition of loss, obtain ∂l

∂x
(l)
i

Recursively compute the loss derivatives wrt the activations

∂ℓ

∂s
(l)
i

= ∂ℓ

∂x
(l)
i

σ′(s(l)
i ) and ∂ℓ

∂x
(l−1)
j

= Σi
∂ℓ

∂s
(l)
i

w
(l)
i,j

Then wrt the parameters
∂ℓ

∂w
(l)
i,j

= ∂ℓ

∂s
(l)
i

x
(l−1)
j and ∂ℓ

∂b
(l)
i

= ∂ℓ

∂s
(l)
i

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 8



Jocobian in Tensorial form

ψ : RN → RM then
[
∂ψ
∂x

]
=


∂ψ1
∂x1

. . . ∂ψ1
∂xN

...
. . .

...
∂ψM
∂x1

. . . ∂ψM
∂xN



ψ : RN×M → R then
[[
∂ψ
∂x

]]
=


∂ψ
∂w1,1

. . . ∂ψ
∂w1,M

...
. . .

...
∂ψ

∂wN,1
. . . ∂ψ

∂wN,M



Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 9



Jocobian in Tensorial form

ψ : RN → RM then
[
∂ψ
∂x

]
=


∂ψ1
∂x1

. . . ∂ψ1
∂xN

...
. . .

...
∂ψM
∂x1

. . . ∂ψM
∂xN



ψ : RN×M → R then
[[
∂ψ
∂x

]]
=


∂ψ
∂w1,1

. . . ∂ψ
∂w1,M

...
. . .

...
∂ψ

∂wN,1
. . . ∂ψ

∂wN,M



Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 9



Forward Pass

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 10



Goal of Backward Pass

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 11



Begin from succeeding layer

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 12



Begin from succeeding layer

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 13



Begin from succeeding layer

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 14



Begin from succeeding layer

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 15



Begin from succeeding layer

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 16



Update the parameters

W (l) = W (l) − η
[[

∂ℓ
∂w(l)

]]
and b(l) = b(l) − η

[
∂ℓ
∂b(l)

]

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 17



Observations

BP is basically simple: applying chain rule iteratively

It can be expressed in tensorial form (similar to the forward pass)
Heavy computations are with the linear operations
Nonlinearities go into simple element wise operations
In an untreated situation, BP Needs all the intermediate layer results
to be in memory
Takes twice the computations of forward pass

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 18



Observations

BP is basically simple: applying chain rule iteratively
It can be expressed in tensorial form (similar to the forward pass)

Heavy computations are with the linear operations
Nonlinearities go into simple element wise operations
In an untreated situation, BP Needs all the intermediate layer results
to be in memory
Takes twice the computations of forward pass

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 18



Observations

BP is basically simple: applying chain rule iteratively
It can be expressed in tensorial form (similar to the forward pass)
Heavy computations are with the linear operations

Nonlinearities go into simple element wise operations
In an untreated situation, BP Needs all the intermediate layer results
to be in memory
Takes twice the computations of forward pass

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 18



Observations

BP is basically simple: applying chain rule iteratively
It can be expressed in tensorial form (similar to the forward pass)
Heavy computations are with the linear operations
Nonlinearities go into simple element wise operations

In an untreated situation, BP Needs all the intermediate layer results
to be in memory
Takes twice the computations of forward pass

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 18



Observations

BP is basically simple: applying chain rule iteratively
It can be expressed in tensorial form (similar to the forward pass)
Heavy computations are with the linear operations
Nonlinearities go into simple element wise operations
In an untreated situation, BP Needs all the intermediate layer results
to be in memory

Takes twice the computations of forward pass

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 18



Observations

BP is basically simple: applying chain rule iteratively
It can be expressed in tensorial form (similar to the forward pass)
Heavy computations are with the linear operations
Nonlinearities go into simple element wise operations
In an untreated situation, BP Needs all the intermediate layer results
to be in memory
Takes twice the computations of forward pass

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 18



Beyond MLP
We can generalize MLP

To an arbitrary Directed Acyclic Graph (DAG)

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 19



Forward pass in the computational graph

x(0) = x

x(1) = ϕ(1)(x(0);w(1))
x(2) = ϕ(2)(x(0), x(1);w(2))
f(x) = x(3) = ϕ(3)(x(1), x(2);w(1))

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 20



Forward pass in the computational graph

x(0) = x

x(1) = ϕ(1)(x(0);w(1))

x(2) = ϕ(2)(x(0), x(1);w(2))
f(x) = x(3) = ϕ(3)(x(1), x(2);w(1))

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 20



Forward pass in the computational graph

x(0) = x

x(1) = ϕ(1)(x(0);w(1))
x(2) = ϕ(2)(x(0), x(1);w(2))

f(x) = x(3) = ϕ(3)(x(1), x(2);w(1))

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 20



Forward pass in the computational graph

x(0) = x

x(1) = ϕ(1)(x(0);w(1))
x(2) = ϕ(2)(x(0), x(1);w(2))
f(x) = x(3) = ϕ(3)(x(1), x(2);w(1))

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 20



Notation: Jacobian of a general transformation

if (a1 . . . aQ) = ϕ(b1 . . . bR) then we use the notation (3)

[
∂a
∂b

]
=JTϕ =


∂a1
∂b1

. . .
∂aQ

∂b1
...

. . .
...

∂a1
∂bR

. . .
∂aQ

∂bR

 (4)

if (a1 . . . aQ) = ϕ(b1 . . . bR; c1 . . . cS) then we use the notation (5)

[
∂a
∂c

]
=JTϕ|c =


∂a1
∂c1

. . .
∂aQ

∂c1
...

. . .
...

∂a1
∂CS

. . .
∂aQ

∂cS

 (6)

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 21



Notation: Jacobian of a general transformation

if (a1 . . . aQ) = ϕ(b1 . . . bR) then we use the notation (3)

[
∂a
∂b

]
=JTϕ =


∂a1
∂b1

. . .
∂aQ

∂b1
...

. . .
...

∂a1
∂bR

. . .
∂aQ

∂bR

 (4)

if (a1 . . . aQ) = ϕ(b1 . . . bR; c1 . . . cS) then we use the notation (5)

[
∂a
∂c

]
=JTϕ|c =


∂a1
∂c1

. . .
∂aQ

∂c1
...

. . .
...

∂a1
∂CS

. . .
∂aQ

∂cS

 (6)

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 21



Backward pass

From the loss equation, we can compute
[

∂ℓ
∂x(3)

]

[
∂ℓ

∂x(2)

]
=

[
∂x(3)

∂x(2)

] [
∂ℓ

∂x(3)

]
= JTϕ(3)|x(2)

[
∂ℓ

∂x(3)

]
[

∂ℓ
∂x(1)

]
=

[
∂x(3)

∂x(1)

] [
∂ℓ

∂x(3)

]
+

[
∂x(2)

∂x(1)

] [
∂ℓ

∂x(2)

]
=JTϕ(3)|x(1)

[
∂ℓ

∂x(3)

]
+ JTϕ(2)|x(1)

[
∂ℓ

∂x(2)

]

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 22



Backward pass

From the loss equation, we can compute
[

∂ℓ
∂x(3)

]
[

∂ℓ
∂x(2)

]
=

[
∂x(3)

∂x(2)

] [
∂ℓ

∂x(3)

]
= JTϕ(3)|x(2)

[
∂ℓ

∂x(3)

]

[
∂ℓ

∂x(1)

]
=

[
∂x(3)

∂x(1)

] [
∂ℓ

∂x(3)

]
+

[
∂x(2)

∂x(1)

] [
∂ℓ

∂x(2)

]
=JTϕ(3)|x(1)

[
∂ℓ

∂x(3)

]
+ JTϕ(2)|x(1)

[
∂ℓ

∂x(2)

]

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 22



Backward pass

From the loss equation, we can compute
[

∂ℓ
∂x(3)

]
[

∂ℓ
∂x(2)

]
=

[
∂x(3)

∂x(2)

] [
∂ℓ

∂x(3)

]
= JTϕ(3)|x(2)

[
∂ℓ

∂x(3)

]
[

∂ℓ
∂x(1)

]
=

[
∂x(3)

∂x(1)

] [
∂ℓ

∂x(3)

]
+

[
∂x(2)

∂x(1)

] [
∂ℓ

∂x(2)

]
=JTϕ(3)|x(1)

[
∂ℓ

∂x(3)

]
+ JTϕ(2)|x(1)

[
∂ℓ

∂x(2)

]
Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 22



Backward pass

[
∂ℓ

∂w(1)

]
=

[
∂x(3)

∂w(1)

] [
∂ℓ

∂x(3)

]
+

[
∂x(1)

∂w(1)

] [
∂ℓ

∂x(1)

]
=JTϕ(3)|w(1)

[
∂ℓ

∂x(3)

]
+ JTϕ(1)|w(1)

[
∂ℓ

∂x(1)

]

[
∂ℓ

∂w(2)

]
=

[
∂x(2)

∂w(2)

] [
∂ℓ

∂x(2)

]
= JTϕ(2)|w(2)

[
∂ℓ

∂x(2)

]

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 23



Backward pass

[
∂ℓ

∂w(1)

]
=

[
∂x(3)

∂w(1)

] [
∂ℓ

∂x(3)

]
+

[
∂x(1)

∂w(1)

] [
∂ℓ

∂x(1)

]
=JTϕ(3)|w(1)

[
∂ℓ

∂x(3)

]
+ JTϕ(1)|w(1)

[
∂ℓ

∂x(1)

]
[

∂ℓ
∂w(2)

]
=

[
∂x(2)

∂w(2)

] [
∂ℓ

∂x(2)

]
= JTϕ(2)|w(2)

[
∂ℓ

∂x(2)

]
Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 23



Developing DNN architectures

Developing large architectures from scratch is tedious

DL frameworks facilitate with libraries for

tensor operators
mechanisms to combine them into DAGs
automatically differentiate them

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 24



Developing DNN architectures

Developing large architectures from scratch is tedious
DL frameworks facilitate with libraries for

tensor operators
mechanisms to combine them into DAGs
automatically differentiate them

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 24



Developing DNN architectures

Developing large architectures from scratch is tedious
DL frameworks facilitate with libraries for

tensor operators

mechanisms to combine them into DAGs
automatically differentiate them

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 24



Developing DNN architectures

Developing large architectures from scratch is tedious
DL frameworks facilitate with libraries for

tensor operators
mechanisms to combine them into DAGs

automatically differentiate them

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 24



Developing DNN architectures

Developing large architectures from scratch is tedious
DL frameworks facilitate with libraries for

tensor operators
mechanisms to combine them into DAGs
automatically differentiate them

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 24



Autograd

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 25



Gradient Computation

PyTorch automatically constructs on-the-fly graph to compute
gradient of any wrt any tensor

Via autograd

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 26



Gradient Computation

PyTorch automatically constructs on-the-fly graph to compute
gradient of any wrt any tensor
Via autograd

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 26



Autograd

Easy to use syntax: only need to define the sequence of forward pass
operations

Flexible: Computational graph can be dynamic, so is the forward pass

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 27



Autograd

Easy to use syntax: only need to define the sequence of forward pass
operations
Flexible: Computational graph can be dynamic, so is the forward pass

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 27



Autograd in PyTorch

A tensor has the Boolean field ‘requires_grad’

PyTorch knows if it has to compute gradients wrt this tensor or not
Default is False
requires_grad_() function can be used to set to any value

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 28



Autograd in PyTorch

A tensor has the Boolean field ‘requires_grad’
PyTorch knows if it has to compute gradients wrt this tensor or not

Default is False
requires_grad_() function can be used to set to any value

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 28



Autograd in PyTorch

A tensor has the Boolean field ‘requires_grad’
PyTorch knows if it has to compute gradients wrt this tensor or not
Default is False
requires_grad_() function can be used to set to any value

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 28



Autograd

torch.autograd.grad(o/p,i/p) returns gradients of outputs wrt
the inputs

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 29



Backward()

Tensor.backward() accumulates the gradients of all the leaf nodes
in the graph

Tensor.grad field accumulates these gradient
Standard function used to train the models.
Since it ACCUMULATES the gradients, one may need to set
Tensor.grad to zero before calling it
Accumulation is helpful (e.g. sum of losses, or sum over different
mini-batches, etc.)

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 30



Backward()

Tensor.backward() accumulates the gradients of all the leaf nodes
in the graph
Tensor.grad field accumulates these gradient

Standard function used to train the models.
Since it ACCUMULATES the gradients, one may need to set
Tensor.grad to zero before calling it
Accumulation is helpful (e.g. sum of losses, or sum over different
mini-batches, etc.)

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 30



Backward()

Tensor.backward() accumulates the gradients of all the leaf nodes
in the graph
Tensor.grad field accumulates these gradient
Standard function used to train the models.

Since it ACCUMULATES the gradients, one may need to set
Tensor.grad to zero before calling it
Accumulation is helpful (e.g. sum of losses, or sum over different
mini-batches, etc.)

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 30



Backward()

Tensor.backward() accumulates the gradients of all the leaf nodes
in the graph
Tensor.grad field accumulates these gradient
Standard function used to train the models.
Since it ACCUMULATES the gradients, one may need to set
Tensor.grad to zero before calling it

Accumulation is helpful (e.g. sum of losses, or sum over different
mini-batches, etc.)

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 30



Backward()

Tensor.backward() accumulates the gradients of all the leaf nodes
in the graph
Tensor.grad field accumulates these gradient
Standard function used to train the models.
Since it ACCUMULATES the gradients, one may need to set
Tensor.grad to zero before calling it
Accumulation is helpful (e.g. sum of losses, or sum over different
mini-batches, etc.)

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 30



torch.no_grad()

Switches the autograd machinery off

Useful for operations such as parameter updation

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 31



torch.no_grad()

Switches the autograd machinery off
Useful for operations such as parameter updation

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 31



detach()

Creates a tensor which only shares data but doesn’t require gradient
computation

Not connected to the current graph
Used when gradient should not be propagated beyond a variable, or
to update the leaf nodes in the graph

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 32



detach()

Creates a tensor which only shares data but doesn’t require gradient
computation
Not connected to the current graph

Used when gradient should not be propagated beyond a variable, or
to update the leaf nodes in the graph

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 32



detach()

Creates a tensor which only shares data but doesn’t require gradient
computation
Not connected to the current graph
Used when gradient should not be propagated beyond a variable, or
to update the leaf nodes in the graph

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 32



Some Notes

By default, autograd deletes the computational graph after it is
evaluated

retain_graph indicates to keep it
Autograd can compute higher-order derivatives
Specified with create_graph = True

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 33



Some Notes

By default, autograd deletes the computational graph after it is
evaluated
retain_graph indicates to keep it

Autograd can compute higher-order derivatives
Specified with create_graph = True

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 33



Some Notes

By default, autograd deletes the computational graph after it is
evaluated
retain_graph indicates to keep it
Autograd can compute higher-order derivatives

Specified with create_graph = True

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 33



Some Notes

By default, autograd deletes the computational graph after it is
evaluated
retain_graph indicates to keep it
Autograd can compute higher-order derivatives
Specified with create_graph = True

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 33



Demo

Colab Notebook: Backword()

Dr. Konda Reddy Mopuri dl4cv-5/Backpropagation 34

https://colab.research.google.com/drive/1TwTX3QN2mp3JYvPgRIpUzkiHjKOA0aM_?usp=sharing

